For any positive numberĀ \(b\) but \(b \ne 1\),$$\large{\log _b}{b^k} = k$$Example:$${\log _2}{2^5} = 5$$For any positive numberĀ \(b\) but \(b \ne 1\),$$\LARGE{b^{{{\log }_b}k}} = k$$Example:$$\LARGE{6^{{{\log }_6}3}} = 3$$